Big Data vs. Virtualization

Big Data Information Approaches

Big Data Information Approaches

Globally, organizations are facing challenges emanating from data issues, including data consolidation, value, heterogeneity, and quality. At the same time, they have to deal with the aspect of Big Data. In other words, consolidating, organizing, and realizing the value of data in an organization has been a challenge over the years. To overcome these challenges, a series of strategies have been devised. For instance, organizations are actively leveraging on methods such as Data Warehouses, Data Marts, and Data Stores to meet their data assets requirements. Unfortunately, the time and resources required to deliver value using these legacy methods is a distressing issue. In most cases, typical Data Warehouses applied for business intelligence (BI) rely on batch processing to consolidate and present data assets. This traditional approach is affected by the latency of information.

Big Data

As the name suggests, Big Data describes a large volume of data that can either be structured or unstructured. It originates from business processes among other sources. Presently, artificial intelligence, mobile technology, social media, and the Internet of Things (IoT) have become new sources of vast amounts of data. In Big Data, the organization and consolidation matter more than the volume of the data. Ultimately, big data can be analyzed to generate insights that can be crucial in strategic decision making for a business.

Features of Big Data

The term Big Data is relatively new. However, the process of collecting and preserving vast amounts of information for different purposes has been there for decades. Big Data gained momentum recently with the three V’s features that include volume, velocity, and variety.

Volume: First, businesses gather information from a set of sources, such as social media, day-to-day operations, machine to machine data, weblogs, sensors, and so on. Traditionally, storing the data was a challenge. However, the requirement has been made possible by new technologies such as Hadoop.

Velocity: Another defining nature of Big Data is that it flows at an unprecedented rate that requires real-time processing. Organizations are gathering information from RFID tags, sensors, and other objects that need timely processing of data torrents.

Variety: In modern enterprises, information comes in different formats. For instance, a firm can gather numeric and structured data from traditional databases as well as unstructured emails, video, audio, business transactions, and texts.

Complexity: As mentioned above, Big Data comes from diverse sources and in varying formats. In effect, it becomes a challenge to consolidate, match, link, cleanse, or modify this data across an organizational system. Unfortunately, Big Data opportunities can only be explored when an organization successfully correlates relationships and connects multiple data sets to prevent it from spiraling out of control.

Variability: Big Data can have inconsistent flows within periodic peaks. For instance, in social media, a topic can be trending, which can tremendously increase collected data. Variability is also common while dealing with unstructured data.

Big Data Potential and Importance

The vast amount of data collected and preserved on a global scale will keep growing. This fact implies that there is more potential to generate crucial insights from this information. Unfortunately, due to various issues, only a small fraction of this data actually gets analyzed. There is a significant and untapped potential that businesses can explore to make proper and beneficial use of this information.

Analyzing Big Data allows businesses to make timely and effective decisions using raw data. In reality, organizations can gather data from diverse sources and process it to develop insights that can aid in reducing operational costs, production time, innovating new products, and making smarter decisions. Such benefits can be achieved when enterprises combine Big Data with analytic techniques, such as text analytics, predictive analytics, machine learning, natural language processing, data mining and so on.

Big Data Application Areas

Practically, Big Data can be used in nearly all industries. In the financial sector, a significant amount of data is gathered from diverse sources, which requires banks and insurance companies to innovate ways to manage Big Data. This industry aims at understanding and satisfying their customers while meeting regulatory compliance and preventing fraud. In effect, banks can exploit Big Data using advanced analytics to generate insights required to make smart decisions.

In the education sector, Big Data can be employed to make vital improvements on school systems, quality of education and curriculums. For instance, Big Data can be analyzed to assess students’ progress and to design support systems for professors and tutors.

Healthcare providers, on the other hand, collect patients’ records and design various treatment plans. In the healthcare sector, practitioners and service providers are required to offer accurate and timely treatment that is transparent to meet the stringent regulations in the industry and to enhance the quality of life. In this case, Big Data can be managed to uncover insights that can be used to improve the quality of service.

Governments and different authorities can apply analytics to Big Data to create the understanding required to manage social utilities and to develop solutions necessary to solve common problems, such as city congestion, crime, and drug use. However, governments must also consider other issues such as privacy and confidentiality while dealing with Big Data.

In manufacturing and processing, Big Data offers insights that stakeholders can use to efficiently use raw materials to output quality products. Manufacturers can perform analytics on big data to generate ideas that can be used to increase market share, enhance safety, minimize wastage, and solve other challenges faster.

In the retail sector, companies rely heavily on customer loyalty to maintain market share in a highly competitive market. In this case, managing big data can help retailers to understand the best methods to utilize in marketing their products to existing and potential consumers, and also to sustain relationships.

Challenges Handling Big Data

With the introduction of Big Data, the challenge of consolidating and creating value on data assets becomes magnified. Today, organizations are expected to handle increased data velocity, variety, and volume. It is now a business necessity to deal with traditional enterprise data and Big Data. Traditional relational databases are suitable for storing, processing, and managing low-latency data. Big Data has increased volume, variety, and velocity, making it difficult for legacy database systems to efficiently handle it.

Failing to act on this challenge implies that enterprises cannot tap the opportunities presented by data generated from diverse sources, such as machine sensors, weblogs, social media, and so on. On the contrary, organizations that will explore Big Data capabilities amidst its challenges will remain competitive. It is necessary for businesses to integrate diverse systems with Big Data platforms in a meaningful manner, as heterogeneity of data environments continue to increase.


Virtualization involves turning physical computing resources, such as databases and servers into multiple systems. The concept consists of making the function of an IT resource simulated in software, making it identical to the corresponding physical object. Virtualization technique uses abstraction to create a software application to appear and operate like hardware to provide a series of benefits ranging from flexibility, scalability, performance, and reliability.

Typically, virtualization is made possible using virtual machines (VMs) implemented in microprocessors with necessary hardware support and OS-level implementations to enhance computational productivity. VMs offers additional convenience, security, and integrity with little resource overhead.

Benefits of Virtualization

Achieving the economics of wide-scale functional virtualization using available technologies is easy to improve reliability by employing virtualization offered by cloud service providers on fully redundant and standby basis. Traditionally, organizations would deploy several services to operate at a fraction of their capacity to meet increased processing and storage demands. These requirements resulted in increased operating costs and inefficiencies. With the introduction of virtualization, the software can be used to simulate functionalities of hardware. In effect, businesses can outstandingly eliminate the possibility of system failures. At the same time, the technology significantly reduces capital expense components of IT budgets. In future, more resources will be spent on operating, than acquisition expenses. Company funds will be channeled to service providers instead of purchasing expensive equipment and hiring local personnel.

Overall, virtualization enables IT functions across business divisions and industries to be performed more efficiently, flexibly, inexpensively, and productively. The technology meaningfully eliminates expensive traditional implementations.

Apart from reducing capital and operating costs for organizations, virtualization minimizes and eliminates downtime. It also increases IT productivity, responsiveness, and agility. The technology provides faster provisioning of resources and applications. In case of incidents, virtualization allows fast disaster recovery that maintains business continuity.

Types of Virtualization

There are various types of virtualization, such as a server, network, and desktop virtualization.

In server virtualization, more than one operating system runs on a single physical server to increase IT efficiency, reduce costs, achieve timely workload deployment, improve availability and enhance performance.

Network virtualization involves reproducing a physical network to allow applications to run on a virtual system. This type of virtualization provides operational benefits and hardware independence.

In desktop virtualization, desktops and applications are virtualized and delivered to different divisions and branches in a company. Desktop virtualization supports outsourced, offshore, and mobile workers who can access simulate desktop on tablets and iPads.

Characteristics of Virtualization

Some of the features of virtualization that support the efficiency and performance of the technology include:

Partitioning: In virtualization, several applications, database systems, and operating systems are supported by a single physical system since the technology allows partitioning of limited IT resources.

Isolation: Virtual machines can be isolated from the physical systems hosting them. In effect, if a single virtual instance breaks down, the other machine, as well as the host hardware components, will not be affected.

Encapsulation: A virtual machine can be presented as a single file while abstracting other features. This makes it possible for users to identify the VM based on a role it plays.

Data Virtualization – A Solution for Big Data Challenges

Virtualization can be viewed as a strategy that helps derive information value when needed. The technology can be used to add a level of efficiency that makes big data applications a reality. To enjoy the benefits of big data, organizations need to abstract data from different reinforcements. In other words, virtualization can be deployed to provide partitioning, encapsulation, and isolation that abstracts the complexities of Big Data stores to make it easy to integrate data from multiple stores with other data from systems used in an enterprise.

Virtualization enables ease of access to Big Data. The two technologies can be combined and configured using the software. As a result, the approach makes it possible to present an extensive collection of disassociated and structured and unstructured data ranging from application and weblogs, operating system configuration, network flows, security events, to storage metrics.

Virtualization improves storage and analysis capabilities on Big Data. As mentioned earlier, the current traditional relational databases are incapable of addressing growing needs inherent to Big Data. Today, there is an increase in special purpose applications for processing varied and unstructured big data. The tools can be used to extract value from Big Data efficiently while minimizing unnecessary data replication. Virtualization tools also make it possible for enterprises to access numerous data sources by integrating them with legacy relational data centers, data warehouses, and other files that can be used in business intelligence. Ultimately, companies can deploy virtualization to achieve a reliable way to handle complexity, volume, and heterogeneity of information collected from diverse sources. The integrated solutions will also meet other business needs for near-real-time information processing and agility.

In conclusion, it is evident that the value of Big Data comes from processing information gathered from diverse sources in an enterprise. Virtualizing big data offers numerous benefits that cannot be realized while using physical infrastructure and traditional database systems. It provides simplification of Big Data infrastructure that reduces operational costs and time to results. Shortly, Big Data use cares will shift from theoretical possibilities to multiple use patterns that feature powerful analytics and affordable archival of vast datasets. Virtualization will be crucial in exploiting Big Data presented as abstracted data services.