DataStage – Netezza Connector Action Column

Over the years have occasionally use the action column feature, however, the last month or so I have found myself using it quite a lot. This is especially true in relation to the tea set and not just in relation to the change capture stage.

The first thing you need to know is, if you want to prevent getting the ‘no action column found’ notice on the target stage, need to ensure that the action column has been coded to be a single character field char (1). Otherwise, the Netezza connector stage will not recognize your field as an action column.

While most developers will commonly work with the action column feature in relation to the change capture stage, it can also be very useful if you have created a field from one or more inputs to tell you what behavior the row requires. I have found that this approach can be very useful and efficient under the right circumstances.

Example Pattern for Action Column Using Multiple Source Selects

Example Pattern for Action Column Using Multiple Source Selects

Action column configuration example

Action Column Field Type

Action Column Field Type

 Change Code Values Mapping To Action Column

  • Here’s a quick reference table to provide the interpretation of the change type code to the actual one character action column value to which it will need to be interpreted.

Change Code Type

Change Type Code

Action Column Value

Copy (Data Without Changes)

0

No
value for this Change Type

Insert

1

I

Delete

2

D

Update

3

U

Example Transformer Stage, Derivation

  •  Here is a quick transformer stage derivation coding example to take advantage of the action call capabilities. If you haven’t already handled the removal of the copy rows, you may also want to add a constraint.
  • The combination I most frequently find myself using is the insert and update combination.
if Lnk_Out_To_Tfm.change_code=1 then ‘I’

Else if Lnk_Out_To_Tfm.change_code=2 then ‘D’

Else if Lnk_Out_To_Tfm.change_code=3 then ‘U’

Related References

Home > InfoSphere Information Server 11.7.0 > InfoSphere DataStage and QualityStage > Developing parallel jobs > Introduction to InfoSphere DataStage Balanced Optimization > Job design considerations  > Specific considerations for the Netezza connector

Data Warehousing vs. Data Virtualization

Information Management

Information Management

Today, a business heavily depends on data to gain insights into their processes and operations and to develop new ways to increase market share and profits. In most cases, data required to generate the insights are sourced and located in diverse places, which requires reliable access mechanism. Currently, data warehousing and data virtualization are two principal techniques used to store and access the sources of critical data in a company. Each approach offers various capabilities and can be deployed for particular use cases as described in this article.

Data Warehousing

A data warehouse is designed and developed to secure host historical data from different sources. In effect, this technique protects data sources from performance degradation caused by the impact of sophisticated analytics and enormous demands for reports. Today, various tools and platforms have been developed for data warehouse automation in companies. They can be deployed to quicken development, automate testing, maintenance, and other steps involved in data warehousing. In a data warehouse, data is stored as a series of snapshots, where a record represents data at a particular time. In effect, companies can analyze data warehouse snapshots to compare data between different periods. The results are converted into insights required to make crucial business decisions.

Moreover, a data warehouse is optimized for other functions, such as data retrieval. The technology duplicates data to allow database de-normalization that enhances query performance. The solution is further deployed to create an enterprise data warehouse (EDW) used to service the entire organization.

Data Warehouse Information Architecture

Data Warehouse Information Architecture

Features of a Data Warehouse

A data warehouse is subject-oriented, and it is designed to help entities analyze data. For instance, a company can start a data warehouse focused on sales to learn more about sales data. Analytics on this warehouse can help establish insights such as the best customer for the period. The data warehouse is subject oriented since it can be defined based on a subject matter.

A data warehouse is integrated. Data from various sources is first out into a consistent format. The process requires the firm to resolve some challenges, such as naming conflicts and inconsistencies on units of measure.

A data warehouse in nonvolatile. In effect, data entered into the warehouse should not change after it is stored. This feature increases accuracy and integrity in data warehousing.

A data warehouse is time variant since it focuses on data changes over time. Data warehousing discovers trends in business by using large amounts of historical data. In effect, a typical operation in a data warehouse scans millions of rows to return an output.

A data warehouse is designed and developed to handle ad hoc queries. In most cases, organizations may not predict the amount of workload of a data warehouse. Therefore, it is recommendable to optimize the data warehouse to perform optimally over any possible query operation.

A data warehouse is regularly updated by the ETL process using bulk data modification techniques. Therefore, end users cannot directly update the data warehouse.

Advantages of Data Warehousing

The primary motivation for developing a data warehouse is to provide timely information required for decision making in an organization. A business intelligence data warehouse serves as an initial checkpoint for crucial business data. When a company stores its data in a data warehouse, tracking it becomes natural. The technology allows users to perform quick searches to be able to retrieve and analyze static data.

Another driver for companies investing in data warehouses involves integrating data from disparate sources. This capability adds value to operational applications like customer relationship management systems. A well-integrated warehouse allows the solution to translate information to a more usable and straightforward format, making it easy for users to understand the business data.

The technology also allows organizations to perform a series of analysis on data.

A data warehouse reduces the cost to access historical data in an organization.

Data warehousing provides standardization of data across an organization. Moreover, it helps identify and eliminate errors. Before loading data, the solution shows inconsistencies to users and corrects them.

A data warehouse also improves the turnaround time for analysis and report generation.

The technology makes it easy for users to access and share data. A user can conduct a quick search on a data warehouse to find and analyze static data without wasting time.

Data warehousing removes informational processing load from transaction-oriented databases.

Disadvantages of Data Warehousing

While data warehousing technology is undoubtedly beneficial to many organizations, not all data warehouses are relevant to a business. In some cases, a data warehouse can be expensive to scale and maintain.

Preparing a data warehouse is time-consuming since it requires users to input raw data, which has to be achieved manually.

A data warehouse is not a perfect choice for handing unstructured and complex raw data. Moreover, it faces difficulties incompatibility. Depending on the data sources, companies may require a business intelligence team to ensure compatibility is achieved for data coming from sources running distinct operating systems and programs.

The technology requires a maintenance cost to continue working correctly. The solution needs to be updated with latest features that might be costly. Regularly maintaining a data warehouse will need a business to spend more on top of the initial investment.

A data warehouse use can be limited due to information privacy and confidentiality issues. In most cases, businesses collect and store sensitive data belonging to their clients. Viewing it is only allowed to individual employees, which limits the benefits offered by a data warehouse.

Data Warehousing Use Case

There are a series of ways organizations use data warehouses. Businesses can optimize the technology for performance by identifying the type of data warehouse they have.

  1. A data warehouses can be used by an organization that is struggling to report efficiently on business operations and activities. The solution makes it possible to access the required data
  2. A data warehouse is necessary for an organization where data is copied separately by different divisions for analysis in spreadsheets that are not consistent with one another.
  3. Data warehousing is crucial in organizations where uncertainties about data accuracy are causing executives to question the veracity of reports.
  4. A data warehouse is crucial for business intelligence acceleration. The technology delivers rapid data insights to analysts at different scales, concurrency, and without requiring manual tuning or optimization of a database.
Data Virtualization Information Architecture

Data Virtualization Information Architecture

Data Virtualization

Data virtualization technology does not require transfer or storage of data. Instead, users employ a combination of application programming interfaces (APIs) and metadata (data about data) to interface with data in different sources. Users use joined queries to gain access to the original data sources. In other words, data virtualization offers a simplified and integrated view to business data in real-time as requested by business users, applications, and analytics. In effect, the technology makes it possible to integrate data from distinct sources, formats, and locations, without replication. It creates a unified virtual data layer that delivers data services to support users and various business applications.

Data virtualization performs many of the same data integration functions, that is, extract, transform, and load, data replication, and federation. It leverages modern technology to deliver real-time data integration with agility, low cost, and high speed. In effect, data virtualization eliminates traditional data integration and reduces the need for replicated data warehouses and data marts in most cases.

Capabilities and Benefits of Data Virtualization

There are various benefits of implementing data virtualization in an organization.

Firstly, data virtualization allows access and leverage of all information that helps a firm achieve a competitive advantage. The solution offers a unified virtual layer that abstracts the underlying source complexity and presents disparate data sources as a single source.

Data virtualization is cheaper since it does not require actual hardware devices to be installed. In other words, organizations no longer need to purchase and dedicate a lot of IT resources and additional monetary investment to create on-site resources, similar to the one used in a data warehouse.

Data virtualization allows speedy deployment of resources. In this solution, resource provisioning is fast and straightforward. Organizations are not required to set up physical machines or to create local networks or install other IT components. Users have a single point of access to a virtual environment that can be distributed to the entire company.

Data virtualization is an energy-efficient system since the solution does not require additional local hardware and software. Therefore, an organization will not be required to install cooling systems.

Disadvantages of Data Virtualization

Data virtualization creates a security risk. In the modern world, having information is a cheap way to make money. In effect, company data is frequently targeted by hackers. Implementing data virtualization from disparate sources may give an opportunity to malicious users to steal critical information and use it for monetary gain.

Data virtualization requires a series of channels or links that must work in cohesion to perform the intended task. In this cases, all data sources should be available for virtualization to work effectively.

Data Virtualization Use Cases

  • Companies that rely on business intelligence require data virtualization for rapid prototyping to meet immediate business needs. Data virtualization can create a real-time reporting solution that unifies access to multiple internal databases.
  • Provisioning data services for single-view applications, such as in customer service and call center applications require data virtualization.

 

End Of Support For IBM InfoSphere 9.1.0

IBM Information Server (IIS)

IBM Information Server (IIS)

End of Support for IBM InfoSphere Information Server 9.1.0

IBM InfoSphere Information Server 9.1.0 will reach End of Support on 2018-09-30.  If you are still on the InfoSphere Information Server (IIS) 9.1.0, I hope you have a plan to migrate to an 11-series version soon.  InfoSphere Information Server (IIS) 11.7 would be worth considering if you don’t already own an 11-series license. InfoSphere Information Server (IIS) 11.7 will allow you to take advantage of the evolving thin client tools and other capabilities in the 2018 release pipeline without needing to perform another upgrade.

Related References

IBM Support, End of support notification: InfoSphere Information Server 9.1.0

IBM Support, Software lifecycle, InfoSphere Information Server 9.1.0

IBM Knowledge Center, Home, InfoSphere Information Server 11.7.0, IBM InfoSphere Information Server Version 11.7.0 documentation

Infosphere Information Server (IIS) – Where you can view DataStage and QualityStage Logs?

During the course of the week, the discussion happened regarding the different places where a person might read the DataStage and QualityStage logs in InfoSphere. I hadn’t really thought about it, but here are a few places that come to mind:

  • IBM InfoSphere DataStage and QualityStage Operations Console
  • IBM InfoSphere DataStage and QualityStage Director client
  • IBM InfoSphere DataStage and QualityStage Designer client by pressing Ctrl+L

Printable PDF Version of this Article

Related Reference

IBM Knowledge Center> InfoSphere Information Server 11.7.0 > InfoSphere DataStage and QualityStage > Monitoring jobs

IBM Knowledge Center > InfoSphere Information Server 11.7.0 > Installing > Troubleshooting software installation > Log files

Essbase Connector Error – Client Commands are Currently Not Being Accepted

DataStage Essbase Connector, Essbase Connector Error, Client Commands are Currently Not Being Accepted

DataStage Essbase Connector

While investigating a recent Infosphere Information Server (IIS), Datastage, Essbase Connect error I found the explanations of the probable causes of the error not to be terribly meaningful.  So, now that I have run our error to ground, I thought it might be nice to jot down a quick note of the potential cause of the ‘Client Commands are Currently Not Being Accepted’ error, which I gleaned from the process.

Error Message Id

  • IIS-CONN-ESSBASE-01010

Error Message

An error occurred while processing the request on the server. The error information is 1051544 (message on contacting or from application:[<<DateTimeStamp>>]Local////3544/Error(1013204) Client Commands are Currently Not Being Accepted.

Possible Causes of The Error

This Error is a problem with access to the Essbase object or accessing the security within the Essbase Object.  This can be a result of multiple issues, such as:

  • Object doesn’t exist – The Essbase object didn’t exist in the location specified,
  • Communications – the location is unavailable or cannot be reached,
  • Path Security – Security gets in the way to access the Essbase object location
  • Essbase Security – Security within the Essbase object does not support the user or filter being submitted. Also, the Essbase object security may be corrupted or incomplete.
  • Essbase Object Structure –  the Essbase object was not properly structured to support the filter or the Essbase filter is malformed for the current structure.

Related References

IBM Knowledge Center, InfoSphere Information Server 11.7.0, Connecting to data sources, Enterprise applications, IBM InfoSphere Information Server Pack for Hyperion Essbase

Printable PDF Version of This Article

 

Parallel jobs on Windows fail with APT_IOPort::readBlkVirt;error

APT_IOPort::readBlkVirt Error Screenshot

APT_IOPort::readBlkVirt Error Screenshot

This a known error for windows systems and applies to DataStage and DataQuality jobs using the any or all the three join type stages (Join, Merge, and Lookup).

Error Message

  • <<Link name>>,0: APT_IOPort::readBlkVirt: read for block header, partition 0, [fd 4], returned -1 with errno 10,054 (Unknown error)

Message ID

  • IIS-DSEE-TFIO-00223

Applies To

  • Windows systems only
  • Parallel Engine Jobs the three join type stages (Join, Merge, and Lookup). It does not apply to Server Engine jobs.
  • Infosphere Information Server (IIS), Datastage and DataQuality 9.1 and higher

The Fix

  • Add the APT_NO_IOCOMM_OPTIMIZATION in project administrator and set to blank or 0. I left it blank so it would not impact other jobs
  • Add the environment variable to the job producing the error and set to 1

What it APT_NO_IOCOMM_OPTIMIZATION Does

  • Sets the use of shared memory as the transport type, rather than using the default sockets transport type.
  • Note that in most cases sockets transport type is faster, so, you likely will not to set this across the project as the default for all job. It is best to apply it as necessary for problematic jobs.

Related References

InfoSphere DataStage and QualityStage, Version 9.1 Job Compatibility

IBM Support, JR54078: PARALLEL JOBS ON WINDOWS FAIL WITH APT_IOPORT::READBLKVIRT; ERROR

IBM Support, Information Server DataStage job fails with unknown error 10,054.

 

DataStage – How to Pass the Invocation ID from one Sequence to another

DataStage Invocation ID Passing Pattern Overview

DataStage Invocation ID Passing Pattern Overview

When you are controlling a chain of sequences in the job stream and taking advantage of reusable (multiple instances) jobs it is useful to be able to pass the Invocation ID from the master controlling sequence and have it passed down and assigned to the job run.  This can easily be done with needing to manual enter the values in each of the sequences, by leveraging the DSJobInvocationId variable.  For this to work:

  • The job must have ‘Allow Multiple Instance’ enabled
  • The Invocation Id must be provided in the Parent sequence must have the Invocation Name entered
  • The receiving child sequence will have the invocation variable entered
  • At runtime, a DataStage invocation id instance of the multi-instance job will generate with its own logs.

Variable Name

  • DSJobInvocationId

Note

This approach allows for the reuse of job and the assignment of meaningful instance extension names, which are managed for a single point of entry in the object tree.

Related References: 

IBM Knowledge Center > InfoSphere Information Server 11.5.0

InfoSphere DataStage and QualityStage > Designing DataStage and QualityStage jobs > Building sequence jobs > Sequence job activities > Job Activity properties

DataStage – How to use single quoted parameter list in an Oracle Connector

Data Integration

Data Integration

While working with a client’s 9.1 DataStage version, I ran into a situation where they wanted to parameterize SQL where clause lists in an Oracle Connector stage, which honestly was not very straight forward to figure out.  First, if the APT_OSL_PARAM_ESC_SQUOTE is not set and single quotes are used in the parameter, the job creates unquoted invalid SQL when the parameter is populated.  Second, I found much of the information confusing and/or incomplete in its explanation.   After some research and some trial and error, here is how I resolved the issue.  I’ll endeavor to be concise, but holistic in my explanation.

When this Variable applies

This where I know this process applies, there may be other circumstances to which is this applicable, but I’m listing the ones here with which I have recent experience.

Infosphere Information Server Datastage

  • Versions 91, 11.3, and 11.5

Oracle RDBMS

  • Versions 11g and 12c

Configurations process

Here is a brief explanation of the steps I used to implement the where clause as a parameter.  Please note that in this example, I am using a job parameter to populate on a portion of the where clause, you can certainly pass the entire where clause as a parameter, if it is not too long.

Configure Project Variable in Administrator

  • Add APT_OSL_PARAM_ESC_SQUOTE to project in Administrator
  • Populate the APT_OSL_PARAM_ESC_SQUOTE Variable \
APT_OSL_PARAM_ESC_SQUOTE Project Variable

APT_OSL_PARAM_ESC_SQUOTE Project Variable

Create job parameter

Following your project name convention or standard practice, if you customer and/or project do not have established naming conventions, create the job parameter in the job. See jp_ItemSource parameter in the image below.

Job Parameter In Oracle Connector

Job Parameter In Oracle Connector

Add job parameter to Custom SQL in Select Oracle Connector Stage

On the Job parameter has been created, add the job parameter to the SQL statement of the job.

Job Parameter In SQL

Job Parameter In SQL

Related References

IBM Knowledge Center > InfoSphere Information Server 11.5.0

Connecting to data sources > Databases > Oracle databases > Oracle connector

IBM Support > Limitation of the Parameter APT_OSL_PARAM_ESC_SQUOTE on Plugins on Parallel Canvas

IBM Knowledge Center > InfoSphere Information Server 11.5.0

InfoSphere DataStage and Quality > Stage > Reference > Parallel Job Reference > Environment Variables > Miscellaneous > APT_OSL_PARAM_ESC_SQUOTE

 

How to know if your Oracle Client install is 32 Bit or 64 Bit

Oracle Database, How to know if your Oracle Client install is 32 Bit or 64 Bit

Oracle Database

 

How to know if your Oracle Client install is 32 Bit or 64 Bit

Sometimes you just need to know if your Oracle Client install is 32 bit or 64 bit. But how do you figure that out? Here are two methods you can try.

The first method

Go to the %ORACLE_HOME%\inventory\ContentsXML folder and open the comps.xml file.
Look for <DEP_LIST> on the ~second screen.

If you see this: PLAT=”NT_AMD64” then your Oracle Home is 64 bit
If you see this: PLAT=”NT_X86” then your Oracle Home is 32 bit.

It is possible to have both the 32-bit and the 64-bit Oracle Homes installed.

The second method

This method is a bit faster. Windows has a different lib directory for 32-bit and 64-bit software. If you look under the ORACLE_HOME folder if you see a “lib” AND a “lib32” folder you have a 64 bit Oracle Client. If you see just the “lib” folder you’ve got a 32 bit Oracle Client.

Related References

 

OLTP vs Data Warehousing

Database, OLTP vs Data Warehousing

Database

OLTP Versus Data Warehousing

I’ve tried to explain the difference between OLTP systems and a Data Warehouse to my managers many times, as I’ve worked at a hospital as a Data Warehouse Manager/data analyst for many years. Why was the list that came from the operational applications different than the one that came from the Data Warehouse? Why couldn’t I just get a list of patients that were laying in the hospital right now from the Data Warehouse? So I explained, and explained again, and explained to another manager, and another. You get the picture.
In this article I will explain this very same thing to you. So you know  how to explain this to your manager. Or, if you are a manager, you might understand what your data analyst can and cannot give you.

OLTP

OLTP stands for OLine Transactional Processing. With other words: getting your data directly from the operational systems to make reports. An operational system is a system that is used for the day to day processes.
For example: When a patient checks in, his or her information gets entered into a Patient Information System. The doctor put scheduled tests, a diagnoses and a treatment plan in there as well. Doctors, nurses and other people working with patients use this system on a daily basis to enter and get detailed information on their patients.
The way the data is stored within operational systems is so the data can be used efficiently by the people working directly on the product, or with the patient in this case.

Data Warehousing

A Data Warehouse is a big database that fills itself with data from operational systems. It is used solely for reporting and analytical purposes. No one uses this data for day to day operations. The beauty of a Data Warehouse is, among others, that you can combine the data from the different operational systems. You can actually combine the number of patients in a department with the number of nurses for example. You can see how far a doctor is behind schedule and find the cause of that by looking at the patients. Does he run late with elderly patients? Is there a particular diagnoses that takes more time? Or does he just oversleep a lot? You can use this information to look at the past, see trends, so you can plan for the future.

The difference between OLTP and Data Warehousing

This is how a Data Warehouse works:

How a Data Warehouse works

How a Data Warehouse works

The data gets entered into the operational systems. Then the ETL processes Extract this data from these systems, Transforms the data so it will fit neatly into the Data Warehouse, and then Loads it into the Data Warehouse. After that reports are formed with a reporting tool, from the data that lies in the Data Warehouse.

This is how OLTP works:

How OLTP works

How OLTP works

Reports are directly made from the data inside the database of the operational systems. Some operational systems come with their own reporting tool, but you can always use a standalone reporting tool to make reports form the operational databases.

Pro’s and Con’s

Data Warehousing

Pro’s:

  • There is no strain on the operational systems during business hours
    • As you can schedule the ETL processes to run during the hours the least amount of people are using the operational system, you won’t disturb the operational processes. And when you need to run a large query, the operational systems won’t be affected, as you are working directly on the Data Warehouse database.
  • Data from different systems can be combined
    • It is possible to combine finance and productivity data for example. As the ETL process transforms the data so it can be combined.
  • Data is optimized for making queries and reports
    • You use different data in reports than you use on a day to day base. A Data Warehouse is built for this. For instance: most Data Warehouses have a separate date table where the weekday, day, month and year is saved. You can make a query to derive the weekday from a date, but that takes processing time. By using a separate table like this you’ll save time and decrease the strain on the database.
  • Data is saved longer than in the source systems
    • The source systems need to have their old records deleted when they are no longer used in the day to day operations. So they get deleted to gain performance.

Con’s:

  • You always look at the past
    • A Data Warehouse is updated once a night, or even just once a week. That means that you never have the latest data. Staying with the hospital example: you never knew how many patients are in the hospital are right now. Or what surgeon didn’t show up on time this morning.
  • You don’t have all the data
    • A Data Warehouse is built for discovering trends, showing the big picture. The little details, the ones not used in trends, get discarded during the ETL process.
  • Data isn’t the same as the data in the source systems
    • Because the data is older than those of the source systems it will always be a little different. But also because of the Transformation step in the ETL process, data will be a little different. It doesn’t mean one or the other is wrong. It’s just a different way of looking at the data. For example: the Data Warehouse at the hospital excluded all transactions that were marked as cancelled. If you try to get the same reports from both systems, and don’t exclude the cancelled transactions in the source system, you’ll get different results.

online transactional processing (OLTP)

Pro’s

  • You get real time data
    • If someone is entering a new record now, you’ll see it right away in your report. No delays.
  • You’ve got all the details
    • You have access to all the details that the employees have entered into the system. No grouping, no skipping records, just all the raw data that’s available.

Con’s

  • You are putting strain on an application during business hours.
    • When you are making a large query, you can take processing space that would otherwise be available to the people that need to work with this system for their day to day operations. And if you make an error, by for instance forgetting to put a date filter on your query, you could even bring the system down so no one can use it anymore.
  • You can’t compare the data with data from other sources.
    • Even when the systems are similar. Like an HR system and a payroll system that use each other to work. Data is always going to be different because it is granulated on a different level, or not all data is relevant for both systems.
  • You don’t have access to old data
    • To keep the applications at peak performance, old data, that’s irrelevant to day to day operations is deleted.
  • Data is optimized to suit day to day operations
    • And not for report making. This means you’ll have to get creative with your queries to get the data you need.

So what method should you use?

That all depends on what you need at that moment. If you need detailed information about things that are happening now, you should use OLTP.
If you are looking for trends, or insights on a higher level, you should use a Data Warehouse.

 Related References

 

 

Oracle – How to get a list of user permission grants

IBM Infosphere Information Server (IIS), Oracle – How to get a list of user permission grants

IBM Infosphere Information Server (IIS)

Since the Infosphere, information server, repository, has to be installed manually with the scripts provided in the IBM software, sometimes you run into difficulties. So, here’s a quick script, which I have found useful in the past to identify user permissions for the IAUSER on Oracle database’s to help rundown discrepancies in user permissions.

 

SELECT *

FROM ALL_TAB_PRIVS

WHERE  GRANTEE = ‘iauser’

 

If we cannot run against the ALL_TAB_PRIVS view, then we can try the ALL_TAB_PRIVS view:

 

SELECT *

FROM USER_TAB_PRIVS

WHERE  GRANTEE = ‘iauser’

 

Related References

oracle help Center > Database Reference > ALL_TAB_PRIVS view

What are the Core Capability of Infosphere Information Server?

Information Server Core (IIS) Capabilities

Information Server Core (IIS) Capabilities

 

Three Core Capabilities of Information Server

InfoSphere Information Server (IIS) has three core capabilities:

  • Information Governance
  • Data Integration
  • Data Quality

What the Core Capabilities Provide

The three-core capability translate in to the high-level business processes:

Information Governance – Understand and collaborate

Provides a centrally managed repository and approach, which provides:

  • Information blueprints
  • Relationship discovery across data sources
  • Information technology (IT)-to-business mapping

Data Integration – Transform and deliver

A data integration capability, which provides:

  • Transformation
    • Massive scalability
    • Power for any complexity
    • Total traceability
  • Delivery
    • Data capture at any time
    • Delivery anywhere
    • Big data readiness

Data Quality – Cleanse and monitor

To turn data assets into trusted information:

  • Analysis & validation
  • Data cleansing
  • Data quality rules & management

Related References

IBM Knowledge Center, InfoSphere Information Server Version 11.5.0

Overview of IBM InfoSphere Information Server, Introduction to InfoSphere Information Server

 

 

 

SFDC – Using a timestamp literal in a where clause

Salesforce Connector

Salesforce Connector

Working with timestamp literals in the Infosphere SFDC Connector soql is much like working date literals.  So, here a quick example which may save you some time.

SOQL Timestamp String Literals Where Clause Rules

Basically, the timestamp pattern is straight forward and like the process for dates, but there are some differences. The basic rules are for a soql where clause:

  • No quotes
  • No functions
  • No Casting function, or casting for the where soql where clause to read it
  • It only applies to datetime fields
  • A Timestamp identifier ‘T’
  • And the ISO 1806 time notations

Example SOQL Timestamp String Literals

So, here are a couple of timestamp string literal examples in SQL:

  • 1901-01-01T00:00:00-00:00
  • 2016-01-31T00:00:00-00:00
  • 9999-10-31T00:00:00-00:00

Example SQL with Timestamp String Literal Where Clause

 

Select e.Id,

e.AccountId,

e.StartDateTime

From Event e

WHERE e.StartDateTime > 2014-10-31T00:00:00-00:00

 

Related References

Salesforce Developer Documentation

Home, Developer Documentation, Force.com SOQL and SOSL Reference

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Salesforce Workbench

Home, Technical Library, Workbench

W3C

Date Time Formats

 

SFDC Salesforce Connector – Column Returns Null values, when SOQL Returns Data in Workbench

Salesforce Connector

Salesforce Connector

Recently, encountered a scenario, which is a little out of the norm while using the SFDC Connector.  Once the issue is understood, it is easily remedied.

The problem / Error

  • SOQL run in Salesforce workbench and column returns data
  • The DataStage job/ETL runs without errors or warnings
  • The target column output only returns null values

The Cause

In short the cause is a misalignment between the SOQL field name and the column name in the columns tab of the connector.

The Solution

The fix is simply to convert the dots in the field name to underscores.   Basically, a field name on SOQL of Account.RecordType.Name becomes Account_RecordType_Name.

Example Field / Column Name  Fix

Example SQL

Select c.Id,

c.AccountId,

c.CV_Account_Number__c,

c.Name,

c.Role__c,

c.Status__c,

c.Account.RecordType.Name

From Contact c

Columns Tab With Correct Naming Alignment

Please note that the qualifying dots have been converted to underscores.

infosphere datastage SFDC Connector Columns Tab

SFDC Connector Columns Tab

Related References

 

SFDC – Using a date literal in a where clause

Salesforce Connector

I found working with date literal, when working with the Infosphere SFDC Connector soql, to be counterintuitive for me.  At least as I, normally, as I use SQL.  I spent a little time running trials in Workbench, before I finally locked on to the ‘where clause’ criteria data pattern.  So, here a quick example.

SOQL DATE String Literals Where Clause Rules

Basically, the date pattern is straight forward. The basic rules are for a soql where clause:

  • No quotes
  • No functions
  • No Casting function, or casting for the where soql where clause to read.

Example SOQL DATE String Literals

So, here are a couple of date string literal examples in SQL:

  • 1901-01-01
  • 2016-01-31
  • 9999-10-31

Example SQL with Date String Literal Where Clause

 

Select

t.id,

t.Name,

t.Target_Date__c,

t.User_Active__c

From Target_and_Segmentation__c t

where t.Target_Date__c > 2014-10-31

 

Related References

Salesforce Developer Documentation

Home, Developer Documentation, Force.com SOQL and SOSL Reference

https://developer.salesforce.com/docs/atlas.en-us.soql_sosl.meta/soql_sosl/sforce_api_calls_soql_select_dateformats.htm

Salesforce Workbench

Home, Technical Library, Workbench

 

InfoSphere / Datastage – What are The support Connectors stages for dashDB?

dashDB

dashDB

In a recent discussion, the question came up concern which Infosphere Datastage connectors and/or stages are supported by IBM for dashDB.  So, it seems appropriate to share the insight gained from the question being answered.

What Datastage Connectors and/or stages are Supported for dashDB

You have three choices as to connectors, which may best meet you your needs based on the nature of your environment and the configuration chooses which have been applied:

  1. The DB2 Connector Stage
  2. The JDBC Connector stage
  3. The ODBC Stage

Related References

Connecting to IBM dashDB

InfoSphere Information Server, InfoSphere Information Server 11.5.0, Information Server on Cloud offerings, Connecting to other systems, Connecting to IBM dashDB

DB2 connector

InfoSphere Information Server, InfoSphere Information Server 11.5.0, Connecting to data sources, Databases, IBM DB2 databases, DB2 connector

ODBC stage

InfoSphere Information Server, InfoSphere Information Server 11.5.0, Connecting to data sources, Older stages for connectivity, ODBC stage

JDBC data sources

InfoSphere Information Server, InfoSphere Information Server 11.5.0, Connecting to data sources, Multiple data sources, JDBC data sources

What is the convert function in Datastage?

Algorithm

Algorithm

 

What is the convert function in Datastage?

In its simplest form, the convert function in Infosphere DataStage is a string replacement operation.  Convert can be used to replace a specific character, a list of characters, or a unicode character (e.g. thumbs Up Sign or Grinning Face).

Convert Syntax

convert(‘<<Value to be replaced’,'<<Replacement value >>’,<<Input field>>)

Using the Convert Function to remove a list of Characters

Special Characters in DataStage Handles/converts special characters in a transformer stage, which can cause issues in XML processing and certain databases.

Convert a list of General Characters

Convert(“;:?\+&,*`#’$()|^~@{}[]%!”,”, TrimLeadingTrailing(Lnk_In.Description))

Convert Decimal and Double Quotes

Convert(‘ ” . ‘,”, Lnk_In.Description)

Convert Char(0)

This example replaces Char(0) with nothing essentially removing it as padding and/or space.

convert(char(0),”,Lnk_In.Description)

 

Related References

String functions

InfoSphere Information Server, InfoSphere Information Server 11.5.0, InfoSphere DataStage and QualityStage, Developing parallel jobs, Parallel transform functions, String functions

Data Modeling – Fact Table Effective Practices

Database Table

Database Table

Here are a few guidelines for modeling and designing fact tables.

Fact Table Effective Practices

  • The table naming convention should identify it as a fact table. For example:
    • Suffix Pattern:
      • <<TableName>>_Fact
      • <<TableName>>_F
    • Prefix Pattern:
      • FACT_<TableName>>
      • F_<TableName>>
    • Must contain a temporal dimension surrogate key (e.g. date dimension)
    • Measures should be nullable – this has an impact on aggregate functions (SUM, COUNT, MIN, MAX, and AVG, etc.)
    • Dimension Surrogate keys (srky) should have a foreign key (FK) constraint
    • Do not place the dimension processing in the fact jobs

Related References

Data Modeling – Dimension Table Effective Practices

Database Table

Database Table

I’ve had these notes laying around for a while, so, I thought I consolidate them here.   So, here are few guidelines to ensure the quality of your dimension table structures.

Dimension Table Effective Practices

  • The table naming convention should identify it as a dimension table. For example:
    • Suffix Pattern:
      • <<TableName>>_Dim
      • <<TableName>>_D
    • Prefix Pattern:
      • Dim_<TableName>>
      • D_<TableName>>
  • Have Primary Key (PK) assigned on table surrogate Key
  • Audit fields – Type 1 dimensions should:
    • Have a Created Date timestamp – When the record was initially created
    • have a Last Update Timestamp – When was the record last updated
  • Job Flow: Do not place the dimension processing in the fact jobs.
  • Every Dimension should have a Zero (0), Unknown, row
  • Fields should be ‘NOT NULL’ replacing nulls with a zero (0) numeric and integer type fields or space ( ‘ ‘ ) for Character type files.
  • Keep dimension processing outside of the fact jobs

Related References