Data Modeling – Fact Table Effective Practices

Database Table

Database Table

Here are a few guidelines for modeling and designing fact tables.

Fact Table Effective Practices

  • The table naming convention should identify it as a fact table. For example:
    • Suffix Pattern:
      • <<TableName>>_Fact
      • <<TableName>>_F
    • Prefix Pattern:
      • FACT_<TableName>>
      • F_<TableName>>
    • Must contain a temporal dimension surrogate key (e.g. date dimension)
    • Measures should be nullable – this has an impact on aggregate functions (SUM, COUNT, MIN, MAX, and AVG, etc.)
    • Dimension Surrogate keys (srky) should have a foreign key (FK) constraint
    • Do not place the dimension processing in the fact jobs

Related References

Data Modeling – Dimension Table Effective Practices

Database Table

Database Table

I’ve had these notes laying around for a while, so, I thought I consolidate them here.   So, here are few guidelines to ensure the quality of your dimension table structures.

Dimension Table Effective Practices

  • The table naming convention should identify it as a dimension table. For example:
    • Suffix Pattern:
      • <<TableName>>_Dim
      • <<TableName>>_D
    • Prefix Pattern:
      • Dim_<TableName>>
      • D_<TableName>>
  • Have Primary Key (PK) assigned on table surrogate Key
  • Audit fields – Type 1 dimensions should:
    • Have a Created Date timestamp – When the record was initially created
    • have a Last Update Timestamp – When was the record last updated
  • Job Flow: Do not place the dimension processing in the fact jobs.
  • Every Dimension should have a Zero (0), Unknown, row
  • Fields should be ‘NOT NULL’ replacing nulls with a zero (0) numeric and integer type fields or space ( ‘ ‘ ) for Character type files.
  • Keep dimension processing outside of the fact jobs

Related References

 

 

InfoSphere DataStage – DataStage Parallel Job Peer Code Review Checklist Template

SDLC Development Phase

SDLC Development Phase

Peer code review happens during the development phase and focus on the overall quality and compliance to standards of code and configuration artifacts. However, the hard part of performing a Peer code review isn’t, performing the review, but rather to achieving consistency and thoroughness in the review.   This is where a checklist can contribute significantly, providing a list of things to check and providing a relative weight for the findings.  I hope this template assists with your DataStage job review process.